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Imaging increasingly large neuronal populations at high rates pushed multi-photon microscopy into the photon-
deprived regime. We present PySight, an add-on hardware and software solution tailored for photon-deprived
imaging conditions. PySight more than triples the measured median amplitude of neuronal calcium transients in
awake mice and facilitates single-trial intravital voltage imaging in fruit flies. Its unique data streaming architecture
allowed us to image a fruit fly’s brain olfactory response over 234 μm × 600 μm × 330 μm at 73 volumes per second,
while retaining over 200 times lower data rates than those of a conventional data acquisition system with comparable
voxel sizes (1.2 μm × 1.2 μm × 2.2 μm). PySight requires no electronics expertise or custom synchronization boards,
and its open-source software is extensible to any imaging method based on single-pixel (bucket) detectors. PySight
offers an optimal data acquisition scheme for ever increasing imaging volumes of turbid living tissue. © 2018 Optical

Society of America under the terms of the OSA Open Access Publishing Agreement
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1. INTRODUCTION

Multi-photon laser scanning microscopy (MPLSM) provides a
glimpse into the functioning mammalian brain with subcellular
resolution [1–3]. Recent improvements in optical microscope de-
sign, laser sources, and fluorophores [4,5] have extended the use
of MPLSM to challenging applications, such as imaging of very
large neuronal populations [6–8] and fast volumetric imaging [9].
These applications face a common inherent limitation: a given
rate of photon detection is spread across a rapidly increasing
number of voxels sampled per second. In the resulting photon-
deprived regime, several photodetector-induced noise sources re-
duce the correlation between the total electrical charge acquired
from the photodetector, and the actual number of photons it has
detected [10–13]. Photon counting arrives at a more accurate
estimate of the number of detected photons following each laser
pulse by thresholding electrical current fluctuations into uniform
photon detection events [10–14]. This improvement is particu-
larly useful in neuronal calcium and voltage imaging, where a
small increase in imaging conditions has a large impact on spike
detectability [15,16]. Once photon detection events are discre-
tized, their absolute arrival time can be registered, rather than
the number of photons detected in each time bin. This data ac-
quisition modality, known as “time-stamping” or “time-tagging”,
is agnostic to the number of voxels sampled per second, which

could exceed 1 · 109 voxels per second in modern MPLSM im-
aging techniques [17]. In light of the inherent sparsity of neuronal
dynamics [18] and the effort to identify fast transients correctly
in time, conventional acquisition of mostly empty voxels is
sub-optimal with respect to time-stamping acquisition.

Time-correlated single-photon counting (TCSPC) modules
have been previously incorporated into MPLSM, offering fluores-
cence lifetime and phosphorescence lifetime imaging [19–23].
While some TCSPC modules are capable of a time-stamping
mode of acquisition, they are mostly ill-suited for tracking neuro-
nal activity across a volume of living brain tissue, due to their
additive dead time following photon detection, their limited
sustained count rate, and their insufficient memory depth
(see Table S2 in Supplement 1). Alternative methods for rapid
fluorescence lifetime estimation are incapable of time-stamping,
and their applicability for photon-deprived imaging conditions
through turbid media, such as living brain, has not been
demonstrated [24–28]. A few groups have devised different
photon-counting-apparatus-based approaches, such as home-
built or customized discriminators, complex programmable logic
devices, field programmable gate arrays, and oscilloscopes
[8,10,11,14,29–37]. For example, Vučinić and Sejnowski have
developed an elegant MPLSM that uses a digital oscilloscope
for photon counting, volumetric beam steering, and fluorescence
lifetime imaging, at a fraction of the cost of a conventional
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MPLSM [14]. However, their freely available application frame-
work, neurospy, is limited by the memory depth of currently
available oscilloscopes (e.g., 5 · 109 sampling points for a 10 s
long, single-channel recording at a required detection probability
of ∼90% for incoming photodetector pulses). Other solutions
have obtained a sustainable acquisition duration and better im-
aging conditions than those reached with analog integration
[8,10,29,35,36] with a temporal resolution as good as 2.2 ns
[36,37]. Nevertheless, none of these setups support a time-
stamping acquisition mode, which would have soothed their insa-
tiable demand for bit rate and storage space.

Finally, some photodetector manufacturers now offer bundled
photon counting modules [38,39], where the preamplifier, the dis-
criminator [38,39], and even the subsequent event counter [39] are
integrated with the photodetector. While these products are easy to
incorporate into an existing MPLSM, their current performance
is sub-optimal in terms of pulse-pair resolution (20 ns for
Ref. [38]) or sustained count rate (2 MHz for Ref. [39]).

We introduce here PySight, an add-on solution that seamlessly
embeds time-stamped photon counting into most existing multi-
photon imaging systems. It combines commercial, off-the-shelf
hardware with open-source software, tailored for rapid planar
and volumetric imaging. PySight uniquely time stamps each
photon detection event with 100 ps accuracy, resulting in a
modest data throughput, while exceeding the spatio-temporal
resolution of existing volumetric imaging setups [9,33,40,41].

2. METHODS AND MATERIALS

A. Animal Preparations

All imaging experiments and surgical procedures were approved
by the Tel Aviv University ethics committee for animal use and
welfare and followed pertinent Institutional Animal Care and Use
Committee (IACUC) and local guidelines. A detailed description
of all animal preparations and experimental protocols is provided
in Section 6 of Supplement 1.

B. Data Acquisition

1. Imaging Systems

Data for the planar and volumetric calcium imaging experiments
was acquired with a movable objective two-photon microscope
(MOM) by Sutter Instrument Company, modified to house a
8 kHz resonant-galvanometric scanning unit. Additional modifi-
cations for fast volumetric imaging are described in the following
sections. The laser source used was an 80 MHz 140 fs Ti:sapphire
laser (Chameleon Ultra II, Coherent, Inc.) tuned to 940 nm.
Data for the planar voltage imaging was acquired with Sutter’s
DF-Scope at 910 nm. Complete details can be found in
Section 6 of Supplement 1.

2. Planar Data Acquisition

The collected light was directed at a fast GaAsP photomultiplier
tube (PMT, H10770PA-40SEL, Hamamatsu Photonics K.K.)
through two dichroic mirrors (BrightLine FF735-Di01-25x36,
Semrock and 565dcxr, Chroma Technology Corporation) and
a bandpass filter (525/70-2P, Chroma Technology Corporation).
For PySight acquisition, the output cable of the PMT was con-
nected directly to a high-bandwidth preamplifier (TA1000B-
100-50, Fast ComTec GmbH). The amplified signal was then
conveyed to a fast analog input of an ultrafast multiscaler

(MCS6A-2T8, Fast ComTec GmbH). Another analog input
channel of the multiscaler was dedicated for attenuated transistor–
transistor logic (TTL) pulses from the scanning software
(ScanImage, Vidrio Technologies, LLC.), which were configured
to be logically high when the galvanometric mirror scanned
through the field of view (FOV).

For analog acquisition, the output cable of the PMT was con-
nected directly to a high-speed current amplifier (DHCPA-100,
FEMTO Messtechnik GmbH). The preamplifier was DC-
coupled and set to a bandwidth of 80 MHz on its high gain
setting, and the output’s full bandwidth was used. The amplified
signal was then conveyed to a National Instruments FlexRIO
(PXIe-1073) digitizer with the NI 5734 adapter module set to
a sampling frequency of 120 MHz.

During planar calcium imaging, the gain of the PMT was ad-
justed to produce the highest available signal to noise ratio (SNR)
for its respective acquisition scheme (analog or PySight) calculated
in real time. Immediately afterwards, the acquisition scheme was
altered by rerouting the PMT’s output. Once connected, the same
FOV was re-imaged for the same period of time using the same
parameters. The only difference between the two schemes was the
PMT’s gain, which is calibrated to a higher value when imaging
using the multiscaler due to its built-in discriminators. This allows
the experimenter to filter out much of the multiplicative PMT
noise while retaining high photosensitivity.

During planar voltage imaging, the line signal from the
resonant mirrors of the DF-Scope (Sutter Instrument Company)
was connected to an analog input of the multiscaler. This does not
affect the performance of the imaging system in any way.
The output cable of the PMT was first routed either to a fast
amplifier (TA1000B-100-50, Fast ComTec) connected to the
multiscaler (for PySight-based acquisition) or to a slower pre-
amplifier (C7319, Hamamatsu) connected to a National
Instruments FlexRIO digitizer. After 5 to 10 imaging sessions,
each 30 s long, conducted using a given acquisition scheme,
the output cable of the PMT was rerouted to the other data ac-
quisition scheme, and the experiment was repeated with the same
overall parameters, as elaborated in Section 6 of Supplement 1.
The peak count rate of the multiscaler is 10 GHz (see Table
S2) and so is the nominal sampling frequency of the multiscaler’s
internal 10 MHz oscillator [42]. An optional frequency divider
with an on-board comparator (PRL-260BNT-220, Pulse
Research Lab) was used to convert the readings from the internal
photodiode of the Ti:sapphire laser (Chameleon Ultra II,
Coherent, Inc.) into a 10 MHz clock signal, which was fed into
the multiscaler’s 10 MHz reference clock input [see Fig. 1(a)].
Such synchronization between the laser and the multiscaler is nec-
essary for fluorescence lifetime imaging and other applications
detailed in the discussion section below, but not for ordinary
two-photon imaging, be it planar or volumetric. A frequency
divider with an on-board comparator was chosen, since the
internal photodiode of the Chameleon Ultra II laser outputs a
double-humped, wavelength-dependent signal. Other femto-
second lasers, such as Mira900 (Coherent Inc.) and orange
HP10 (Menlo Systems GmbH), output a more well-behaved
synchronization signal that might be compatible with standard
TTL frequency dividers. If the photodiode has to be thresholded,
and prime timing performances are paramount, consider using
a dedicated fast timing discriminator with a lower temporal jitter
(e.g., TD2000, Fast ComTec GmbH).
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3. Volumetric Data Acquisition

For volumetric imaging, a tunable acoustic gradient index of the
refraction lens (TAG Lens 2.5, TAG Optics, Inc.) was inserted
into the beam path upstream of the resonant-galvo system, as
elaborated in Section 6 of Supplement 1. The TAG lens driver
(DrvKit 3.3, TAG Optics Inc.) was configured to output 44 ns
long TTL synchronization pulses once per focal oscillation. These
were attenuated through two 20 dB RF attenuators (27-9300-20
Cinch Connectivity Solutions) before being conveyed to a fast
analog input of the ultrafast multiscaler.

C. Data Analysis

1. Planar Intravital Calcium Imaging

Data acquired through the MCS6A multiscaler was parsed by
PySight (Code 1 [43]) to HDF5 files, which were then converted

to standard tagged image file (TIF) format. Data acquired
through ScanImage was saved online in TIF format. TIF files
from both acquisition modalities were analyzed with the
CaImAn framework [44], bundling methods for motion correc-
tion, source extraction (utilizing a constrained non-negative
matrix factorization approach), and denoising. The analysis on
both acquisition types (Fig. 2) was done using the very same
parameters. To compare the mean ΔF∕F values, a two-sample,
two-sided t test with Welch’s correction was used. A step-by-step
demonstration of the analysis pipeline, from a list of photon
arrival times to neuronal calcium traces, is presented as a
Jupyter notebook in Code 2 [43].

2. Planar Intravital Voltage Imaging

Data acquired using both the multiscaler and MScan was con-
verted to a TIF format and processed using identical custom
Python scripts available upon request. The analysis first required
the user to mark the region of interest (ROI) containing the ana-
tomical structure in question. The output consisted of the mean
fluorescence trace inside the ROI across all 5 to 10 repetitions of
each fly, as well as the individual fluorescence traces per repetition
per animal.

3. Volumetric Intravital Calcium Imaging

Each trial was parsed by PySight (Code 1 [43]) to a four-dimen-
sional (4D) volume consisting of 2462 × 200 × 512 × 150 voxels
in txyz. Its intensity profile along the axial dimension was nor-
malized by the axial intensity profile acquired in a dilute fluores-
cein solution, as elaborated above. A cuboid volumetric ROI was
manually selected for each olfactory structure, and the normalized
brightness of all of its voxels was evenly summed. The median
brightness in the first 4.7 s (346 volumes) of each trial was con-
sidered to be the baseline brightness. Fluorescence variations were
then calculated by subtracting the baseline brightness from the
instantaneous brightness and dividing the result by the baseline
brightness.

The size of the list files for the twelve trials ranged between
154–157 and 162–163 megabytes for isoamyl acetate and
2-Pentanone trials, respectively. The mean data throughput
was calculated by dividing the size of the largest list file (163 meg-
abytes) by the total acquisition length (33.54 s), neglecting the list
file header length.

Similarly for volumetric imaging of the antennal lobes,
each trial was parsed by PySight to a 4D volume consisting of
2254 × 220 × 512 × 150 voxels in txyz. Its intensity profile along
the axial dimension was normalized by the axial intensity profile
acquired in a dilute fluorescein solution, as elaborated above.
The median brightness in the first 5 s (335 volumes) of each trial
was considered to be the baseline brightness. Fluorescence varia-
tions were then calculated by subtracting the baseline brightness
from the instantaneous brightness and dividing the result by the
baseline brightness. An ellipsoid volumetric ROI was manually
selected for two glomeruli (A and B), and the normalized bright-
ness of all of their voxels were evenly summed. Conversely, to
identify glomeruli C that were more responsive to isoamyl acetate
than to 2-Pentanone, we first binned the 4D volume from each of
the 12 trials 2 × 2 × 2 times in xyz to reduce the computational
load. We then summed the intensity-corrected brightness along
5.5 s, following the first odor puff onset, and applied a three-
dimensional (3D) Gaussian filter with a standard deviation of

(a)

(b) (d)

(c)

Fig. 1. Imaging setup of the proposed system and representative in vivo
images taken in an awake Thy1-GCaMP6f mouse. (a) A typical two-
photon imaging setup, depicted in gray, can be easily upgraded to encom-
pass the multiscaler and enable photon-counting acquisition. The output
of the PMTs, after optional amplification by fast preamplifiers, is relayed
through the multiscaler’s analog inputs (STOP1 and STOP2) to generate
an image using PySight, the software suite provided alongside this paper.
The multiscaler’s SYNC port can output the discriminated signal for a
specific PMT, enabling simultaneous digital acquisition and online mon-
itoring of the discriminated signal through the analog imaging setup. DM,
dichroic mirror; PMT, photomultiplier tube; Preamp, preamplifier; ADC,
analog to digital converter. The full optical path can be found in Fig. S6 in
Supplement 1. (b) Intravital calcium imaging with and without PySight.
Images shown were summed over 100 frames taken at 15 Hz with 44 ns
pixel dwell time. The offset of the analog images (“Analog” and “Online
monitor”) was subtracted, and the mean of the image was matched to that
of PySight’s for comparable presentation. The intensity scale represents pho-
tons (in PySight’s case) or normalized grayscale units in the analog case.
(c) Single frames acquired from the same mouse, normalized to the same
intensity level as explained in (b). The insets depict a single, bright neuron.
(d) Histogram of pixel intensity values in a single frame parsed through
PySight (blue) or analog integration (orange). The mean value is 0.03
counts per pixel. The inset depicts the analog pixel brightness distribution,
along with its mean value. Comparing the two histograms, photon counting
provided better performance (see also Fig. S4 in Supplement 1 for a com-
parison with simulated longer pixel dwell times). Scale bars equal to 50 μm.
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3 × 3 × 1 voxels (3 μm × 3 μm × 4.4 μm) for each individual
trial. Voxels within the antennal lobes were considered to have
a preferential response to isoamyl acetate if their minimal bright-
ness across the isoamyl acetate odor puff trials was higher than the
maximal brightness across the 2-Pentanone odor puff trials. The
binary mask of odor-preferential voxels was applied on the trial-
summed (unsmoothed, full-sized) 4D volume. Its time-collapsed
3D volume was rendered in AMIRA 6.4 (Thermo Fisher
Scientific) yielding Fig. 3(d), and its respective temporal fluores-
cence variation traces [Figs. 3(e)–3(f )] were calculated using
Python scripts available from the code repository [43] and docu-
mentation therein. A sequential montage of antennal lobe slices in
different axial planes was prepared by binning the trial-summed
4D volume 336 × 4 × 4 × 3 times in txyz, then displaying every
sixth slice along the axial dimension, resulting in 6.6 μm thick
axial slices evenly spaced 39.6 μm apart. Color intensity was nor-
malized for each color mask separately, thereby artificially high-
lighting the glomeruli of interest.

D. Software

PySight is an open-source software written in Python, capable of
parsing photon lists into multi-dimensional renderable volumes.
Usually PySight is given a recording from the MCS6A multiscaler
in conjunction with several parameters of the imaging system,
such as its scanning frequency. PySight bins the precise timing
of photon detection events into a multi-dimensional histogram
(Fig. S1, Supplement 1), which can be visualized using either
native Python tools or designated rendering software, such as
ImageJ [45]. PySight can be run using a cross-platform graphical
user interface (Fig. S2, Supplement 1), as well as through simple
Python commands, on single recordings or on multiple record-
ings simultaneously. PySight can also parse time-stamped data
files generated by other photon-counting hardware (see Section 5
in Supplement 1), as long as its format follows the guidelines
listed in the package’s documentation [46].

PySight can be installed via the Python pip application: pip install
pysight. The full source code can be found at https://github.com/
PBLab/python-pysight, published under the Creative Commons
Attribution License. Code 2 [47] further demonstrates how to
use PySight, and Section 2 of Supplement 1 discusses its underlying
algorithm and demonstrates its user interface.

3. RESULTS

A. System Architecture

The anatomy of conventional multi-photon systems involves,
among others, a pulsed laser source, beam steering elements
and their auxiliary optics, a collection arm with one or more
PMTs, pre-amplifiers, and an analog-to-digital acquisition board
[2]. Figure 1(a) depicts such a system with the PySight photon-
counting add-on. Electrical pulses following photon detections
in each PMT are optionally amplified with a high-bandwidth
preamplifier (TA1000B-100-50, Fast ComTec). The amplified
pulses are then conveyed to an ultrafast multiscaler (MCS6A,
Fast Comtec), where a software-controlled discriminator thresh-
old determines the voltage amplitude that will be accepted as an
event. The arrival time of each event is registered at a temporal
resolution of 100 ps with no dead time between events. This basic
setup, along with the PySight software package (Code 1 [43]), is
sufficient for multi-dimensional imaging.

Converting the detected photon arrival times into a multi-
dimensional time series is a matter of interpolating the corre-
sponding instantaneous position of the laser beam focal
point within the sample. PySight computes the difference
between photon arrival times and the respective synchroniza-
tion signals from the laser beam steering elements (Section 2
of Supplement 1). Using a few key inputs from the user like
the scanning mirror’s frequency, it then builds a multi-
dimensional histogram and populates each voxel with the
respective number of photons that were collected when the
laser beam focused on it. The histogram can either be rendered
and viewed directly or be processed further by registering it to
the moving brain’s frame of reference and computing quanti-
tative metrics about its content (neuronal activity, blood flow,
etc.) [4,5]. As rendering takes place off-line, experimental mon-
itoring is done by routing one of the multiscaler outputs
[SYNC, Fig. 1(a)] to the analog-to-digital card of the existing
system. The output of this channel is similar to that of a high-
end discriminator, which already reduces PMT-dependent
noise. Detailed instructions on system setup and use are
provided in Section 1 of Supplement 1, while the full outline
of our optical system is found in Fig. S6.

Figure 1(b) shows summed time lapses of the same FOV at
different times using PySight and conventional analog data ac-
quisition. The summed time lapses and frames were normalized
in accordance with Ref. [11] by subtracting the offset of the ana-
log image and comparing its mean to that of PySight. This linear
normalization process enhances the fact that the background
level is higher in the analog image than in the PySight-generated
image, whereas the peak brightness values (during increased neu-
ronal activity as reflected by increased calcium signal intensity,
see Fig. 2) are lower than those in the PySight-generated
counterpart. Figure 1(c) shows single frames acquired with a
dwell time of 44 ns, corresponding to 3 or 4 laser pulses per
pixel, whereas Fig. 1(d) exemplifies their respective pixel inten-
sity distribution. The photon flux regime encountered here
(average count rates ranging between 0.007 and 0.2 photons
per pixel) is well within the range where photon counting out-
performs analog integration [11,12]. Evidently, less than 3% of
the pixels contained any photon, and only a handful of pixels out
of a million were found to have four photons. Analog integration
dithers these five discrete values of photon counts per pixel into
some subset of its 16 bit sampling range, but this dithering does
not signify a larger dynamic range. On the contrary, it only in-
creases the probability that noisy current fluctuations in the ab-
sence of a photon detection event will amount to similar pixel
values as a rarely occurring genuine single-photon detection
event, thereby corrupting the resolvable contrast, as observed
in Fig. 1(b). Actual photon detection events are also smeared
in the analog integration mode, which fails to distinguish the
large peak height distribution of a single photon [12] and its
after-pulsing artifacts [10] from the extremely rare genuine
instances in which 2–4 photons per pixel were detected. By cor-
rectly nullifying empty pixels and discretizing photon detection
events regardless of their excessive peak height, PySight generates
cleaner images [Figs. 1(b) and 1(c)]. It further rejects periodic
ripple noise artifacts (see Fig. S4 in Supplement 1) characteristic
of some sensitive photodetectors and timing pre-amplifiers [38],
which is particularly beneficial during rapid imaging under
photon-deprived conditions.
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B. PySight Improves Calcium Imaging in Awake Mice

We used PySight to image neurons expressing GCaMP6f under
the Thy-1 promoter in awake mice within a normal photon flux
regime and compared its performance to analog integration
within the same FOV, imaging conditions, and during the same
imaging session. We analyzed both analog and PySight-generated
movies (two mice, four FOVs per acquisition type) using
CaImAn, a calcium analysis framework [44]. PySight’s noise sup-
pression allowed us to use about five times higher PMT gains
(control voltage of 850 mV versus 650 mV in analog imaging),
which gave rise to improved calcium imaging and analysis under
standard imaging conditions (Fig. 2). Following peak detection
filtering, which resulted in a mean firing rate of about 0.2 Hz
for both acquisition types, we found that calcium imaging
with PySight produces considerably higher ΔF∕F calcium tran-
sients when comparing spike-like events from the entire FOV
[Fig. 2(e)]; analog: median of 16% for 311 cells, PySight: median
of 57% for 324 cells, p < 0.0001, Mann–Whitney test).
Accordingly, the mean calcium transient was 247.1% higher with
PySight and 26.1% using analog imaging (p < 0.001, Welch’s
two-sided t test, same cell numbers). The improved imaging
conditions with PySight were retained when using the same
high PMT gain for both imaging modalities (see addendum of
Code 2 [43]).

Having direct access to time-stamped photon counts
allowed us to estimate the relationship between ΔF∕F and the
number of detected photons (Section 3 of Supplement 1): on
average aΔF∕F of 100% corresponds to 5.28 photons per second

per μm2. Additionally, it reduced the mean data throughput by a
factor of 7.5–11.5 compared to the same number of 16 bit pixels
during analog acquisition.

C. PySight Enables Rapid Intravital Volumetric Imaging

Next, we utilize the exquisite temporal precision (100 ps) of
PySight’s hardware for ultrafast volumetric imaging. We imple-
mented the fastest continuous axial scanning scheme available
today, based on an ultrasonic variofocal lens (TAG lens), in a
setup and fashion (Fig. S6 in Supplement 1) similar to Kong
et al. [9]. Figure 3 demonstrates volumetric calcium imaging
of olfactory brain areas in live Drosophila using a TAG lens.
The TAG lens modulates the effective focal depth of the excited
volume sinusoidally at a rate of 189 kHz with no synchroniza-
tion to the scanning mirrors that steer the beam laterally. Despite
the asynchronous scanning, PySight successfully resolves the
volumetric origin of each collected photon (see Fig. 3 and
Section 4 of Supplement 1) based on synchronization TTL
pulses delivered by the TAG lens driver and the planar scanning
software. This simple solution obviates the phased-locked loops
and photodiode-based synchronization apparatus devised in ear-
lier studies for analogous data acquisition systems [9,48].

We imaged the antennal lobes, mushroom bodies, and
lateral horns of a GCaMP6f-expressing Drosophila, while the
fly was repeatedly exposed to two different odors: 2-Pentanone
and isoamyl acetate. The imaged volume, spanning 234 μm ×
600 μm × 330 μm, was large enough to image all six non-
coplanar olfactory regions simultaneously (see Fig. 3 and

(a)

(c) (d) (e)

(b)

Fig. 2. Intravital calcium imaging. (a)–(d) Intravital calcium imaging with (a),(c) analog imaging and (b),(d) PySight. The images were summed over
500 frames to capture the sparse activity of cells and normalized by subtracting the analog offset and equalizing the images’mean values. Notice the larger
ΔF∕F amplitude for PySight-detected calcium transients (b) and (d). (e) Distribution and median of the ΔF∕F values for spike-like events. Median of
PySight-generated calcium transients are 3.6 higher than those in analog imaging (57% for 324 cells, 16% for 311 cells, p < 0.0001, Mann–Whitney
test). Scale bar for (a) and (b) equals 50 μm. Both time lapse recordings were acquired with a 44 ns pixel dwell time.
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Section 5 of Supplement 1). At an imaging rate of 73.4 volumes
per second, the resulting mean data throughput of 5.1 MB/s was
221 times smaller than the data throughput incurred by 8 bit
analog imaging at the same voxelization (200 × 512 × 150 voxels

in xyz). While the lateral horn and antennal lobe responded sim-
ilarly to the 2-Pentanone puffs with prolonged onset responses,
their responses consistently diverged for isoamyl acetate puffs
(see Figs. 3(b) and 3(c) and Section 4 of Supplement 1).

(a)

(d) (e)

(f)

(b) (c)

Fig. 3. Intravital volumetric imaging of a live GCaMP6f-expressing fruit fly brain at a rate of 73.4 volumes per second while the fly was exposed to two
different odors. (a) Multiview projections of the imaged volume to the XY (left), XZ (top), and YZ (right) planes summed across the 234 μm × 600 μm ×
330 μm volume over 33.5 s. (b) and (c) Single-trial fluorescence variations over 25 s in (b) the left lateral horn (brown) and (c) the right antennal lobe
(orange). The fruit fly was exposed to odor puffs during seconds 5–10 and 15–20. While the lateral horn and antennal lobe responded similarly to the
2-Pentanone puffs with prolonged onset responses, their responses consistently diverged for isoamyl acetate puffs. (d)–(f) Glomeruli-specific odor response
dynamics within the antennal lobes. (d) Volume rendering of the antennal lobes with artificial coloring of glomeruli A (magenta), B (blue), and C (green).
Scale bar equals 100 μm. (e) Volumetric calcium transients (ΔF∕F ) from distinct glomeruli in the fly’s antennal lobes were acquired at 67.2 volumes per
second over a volume of 110 μm × 257 μm × 330 μm. The mean response to isoamyl acetate and 2-Pentanone odor puffs is traced in colorful and gray
traces, respectively. The pink rectangles mark the duration of the odor puffs. Glomerulus A exhibits a graduated weakly adapting response to 2-Pentanone
contrasted by a weak response to isoamyl acetate, whereas glomerulus B exhibits a sustained response to isoamyl acetate that peaks well after the odor puff has
ceased. While glomeruli A and B were identified according to their morphological structure, glomeruli C were identified according to their preferential
response to isoamyl acetate, which was consistently stronger than their response to 2-Pentanone. (f) Montage of axial slices of the antennal lobes, highlighting
the localization of the glomeruli rendered in (d) and traced in (e) within the antennal lobes. Each slice spans 6.6 μm in z and 5 s in time axially spaced 40 μm
apart. The glomeruli are separable laterally, axially, and by their response dynamics to both odors and are marked by colorful arrows. Voxel sizes are
(1.2 μm × 1.2 μm × 2.2 μm), while the voxel dwell time is 17.63 ns; a discussion of its calculation is included in Section 4 of Supplement 1.
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Zooming in on the antennal lobes, distinct glomeruli were
identified based on their morphology, response dynamics, and
odor preference [see Figs. 3(d)–3(f )]. Glomerulus A exhibits a
graduated weakly adapting response to 2-Pentanone contrasted
by a weak response to isoamyl acetate, whereas glomerulus B ex-
hibits a sustained response to isoamyl acetate that peaks well after
the odor puff has ceased. While glomeruli A and B were identified
according to their morphological structure, glomeruli C were
identified according to their preferential response to isoamyl
acetate, which was consistently stronger than their response to
2-Pentanone. Glomeruli C were identified in the anterior and
medial edges of both antennal lobes [labeled in green in
Figs. 3(d)–3(f )]. All these response dynamics are absent from
an empty volumetric ROI selected right on top of the right
antennal lobe (see Section 4 of Supplement 1). Hence,
PySight is capable of resolving distinct laminar dynamics simul-
taneously sampled by the variofocal lens rather than merely ex-
tending the effective depth of field using Bessel beams, as
demonstrated earlier [49].

D. Planar Intravital Voltage Imaging

To demonstrate the portability and ease of use of our
add-on hardware, we performed voltage imaging in a different

laboratory across campus using a commercial multi-photon sys-
tem (DF-Scope, Sutter, Inc). Detection—in single trials—of
genetically encoded voltage indicators (GEVI) responses is an ex-
ceptionally challenging application due to their small fractional
changes, fast photobleaching, and low replacement in the cell
membrane [21]. Under two-photon imaging, detection of single
spikes required the use of photon counting, either through direct
measurement of fluorescence changes or using fluorescence
lifetime imaging [21]. Recent advancement in the development
of GEVIs allowed for recording responses to visual stimuli in
the fly brain [50], albeit requiring trial averaging. Here,
PySight resolved single-trial odor responses in vivo in neurites
expressing ASAP2f on the fly antennal lobe (Fig. 4).

4. DISCUSSION

The neuroscience community is steadily striding towards high-
throughput, rapid volumetric imaging of multiple brain regions
[3–5]. To achieve these feats, data acquisition hardware has to
maintain single-photon sensitivity for tracking dim features, while
still handling spouts of photons emitted from sparse bright fea-
tures over lengthy imaging sessions. Analog data acquisition sys-
tems lump the electrical charge sampled per voxel, thereby
degrading SNR and imposing a trade-off between spatio-temporal
resolution and data throughput. Conversely, the data throughput
with the time-stamping photon counter used here scales only with
the number of detected photons, alleviating the need to sacrifice
resolution in order to converge at realistic write speed or stor-
age space.

We have shown here how a suite of commercial off-the-shelf
hardware and our open-source software dramatically boosts neu-
ronal calcium imaging in mice that are awake and voltage im-
aging in the fly brain. PySight has more than tripled the
measured median amplitude of ΔF∕F neuronal calcium transi-
ents in calcium imaging of cortical layers 2–3 of mice that are
awake (Fig. 2), owing in part to the thresholding step that elim-
inates most of the variance in PMT current fluctuations in the
presence and absence of detected photons [10–12]. Its added
value is expected to grow with imaging depth and speed
[17,51], especially given the advent of multi-dimensional
imaging systems, measuring multi-spectral excitability [20,52]
and hyper-spectral emission [53,54], as well as fluorescence/
phosphorescence lifetime [11,14,19–28,33]. Moreover, PySight
facilitated rapid continuous volumetric imaging of the fly’s olfac-
tory system with unprecedented spatio-temporal resolution, dis-
secting the odor response dynamics of individual glomeruli in
4D [Figs. 3(d)–3(f )].

When tracking rapid dynamics using ultrafast lasers with rep-
etition rates in the order of 100 MHz or less and voxel dwell times
of tens of nanoseconds at most, no more than a few photon
counts per voxel are observable in each individual frame in time
[See Fig. 1(d) and Fig. S3 in Supplement 1]. Accordingly, we have
observed a mean count rate of 0.03 photons per pixel in individ-
ual frames [See Fig. 1(d)], and even the brightest pixel of the
brightest neuronal cell body exhibited a peak count rate of
0.35 photons per pixel, corresponding to 0.1 photons per pulse
(See Fig. S3 in Supplement 1). Photon counting is clearly advan-
tageous over analog integration in this regime, as found in pre-
vious studies [10,11,29,36]. The precise cross-over point beyond
which analog integration is preferable over photon counting
depends on the particular parameters of each imaging

(a)

(c)

(d)

(b)

Fig. 4. Odor responses of a GEVI-marked antennal lobe. (a)
Representative image of baseline GEVI signal with a ROI marked over
the area used to measure responses over the antennal lobe. (b) Examples
of twelve different single-trial responses to a 5 s odor stimuli (isoamyl
acetate). The red bar marks the odor puff duration. (c) Zoomed-in trace
marked by the blue rectangle in (b). (d) Overlaid traces (gray) with their
mean (black) and the puff duration (red). Scale bar equals 50 μm. Pixel
dwell time is 123 ns.
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system [11,12], but usually resides well beyond an average count
rate of 0.5 photons per laser pulse and can be extended to higher
photon fluxes using statistical inference methods [11,55–58].

We chose not to assess the improvement in imaging condi-
tions by common measures, such as SNR or image-wide
mean-squared error, for several reasons. First, commonly used
photodetectors suffer from a long-tailed distribution of noise
spikes, which is underestimated by the nominal SNR [10].
Moreover, due to the low density of dynamic features in indi-
vidual frames [less than 3% non-zero pixels in Fig. 1(d)], a naive
computation of the mean-squared error across the entire image
will be poorly correlated with their actual detectability. Finally,
these two metrics are suitable for characterizing an imaging sys-
tem, while we were more interested in measuring how photon
counting improves neuronal calcium transient contrast. We
therefore opted for the calculation of ΔF∕F , which is a well-
established metric for estimating intracellular calcium concentra-
tion transients and is positively correlated with the sensitivity
index of the ΔF∕F metric [15,16].

Users may also synchronize the photon counter with their
laser pulses through its reference clock input (see section), en-
abling several applications, such as fluorescence lifetime imag-
ing [11,14,19,20,22–28,33], image restoration [51], temporal
demultiplexing of interleaved beamlets [33,40], and post-hoc
gated noise reduction. Moreover, as PySight provides direct ac-
cess to the photon count in each voxel, it allows implementing
photon misdetections correction algorithms that can further in-
crease the dynamic range of the rendered images [11,55–58].
Finally, although PySight has been built around specific hard-
ware, the open-source code can handle any list of photon
arrival times through a well-documented application interface
(see Section 2 of Supplement 1). A non-exhaustive table of
compatible hardware is provided in Section 5 of Supplement 1.
As PySight is extensible to any imaging method based on
single-pixel (bucket) detectors, including fast compressive bio-
imaging [59,60], its versatility allows multiple experimenters to
use the same software independent of experimental setups.
Together with its superior noise suppression and high spatio-
temporal precision, PySight offers an optimal data acquisition
scheme for ever increasing imaging volumes of turbid living
tissue.
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